

Today we'll turn the stink into a good odor and we will talk about :

- The present situation in handling Municipal Solid Waste (MSW).
- Vision: Sophisticated automatic Garbage separation systems with W2E technicszero home segregation and zero landfill
- Business concept financial independence
 fast ROI
- Support from the government and the EU
- Who are we?

Current waste management

- Huge amounts of stinky & unhealthy garbage
- Huge municipal expense on handling and controlling
- The environmental disaster of land filling
- Europe is spending millions on organic waste separation.

Automatic waste segregation 150 tons per day

Automatic segregation machine

Plastic is energy blessing!

The Plastic Carbon turns into pure ENERGY!

The new process

This is how the new hybrid W2E looks in reality (Germany)

Home Waste entry point

Electricity generator

Final output products:

Finest worlds compost quality

Electricity

Raw material for the paper industry

Precious

Metals and
Environmental
row materials

Zero landfill !!!

Do Not Touch - it is hot!

Even pruned shrubs vegetation produces a lot of energy

5 Project Data 5.1 Capacity and Waste Program

f waste <u>;</u>
0
sort
following
the
treat
3
plant
The

The working time has been assumed as follows;

5.5 Operating Conditions

	woode type.	y ti cone c	vinceden	working time	acco/cock	300	
	ිස් 13 be	tixear	capacity t/day	waste feeding to the plant	hours/day	3 ⁸⁰ 7	
mixed, unsegregated municipal solid waste (MSW)	Waste A	150.000	900	waste processing waste fermentation treatment after fermentation	nours/day hours/day hours/day	24 24 24	
total		150.000		6 Energy and Mass Balance 6.1 Generation of biogas, <u>electricty</u> and thermal energy (AD)	nd thermal e	energy (AD)	
5.2 Assumed Waste Composition				aggagic fraction dry matter (DM)	t/year m ^{3,4} DM	20.000	
The following waste composition (in weight.%)				ತ್ತಿಸಿದ್ದಲ್ಲು generation of progas total biogas generated from MSW		6.600.000	
nas den assumed and an calculations are based on it:				Electric energy;			
assumed waste composition:		Waste A		caloxific value of biogas	kWh/m³	6,0	
organic fraction paper/cardboard	***	40.0 12.0 0.0		agggass conversion efficiency biogass energy generated conversion into electricity	% kWh/year 34 %	83,0 34,511,400 40,0	
plastics glass metals mither rans leather dianers	የ የ የ የ የ	27 0.00 0.00 0.00		equivalent electric energy electric energy electric energy consumed by the plant sumply for sale	kWh/year 13 kWh/year kWh/year	13.805.000 3.207.040 10.597.960	960
stones, and others	8 %	5 8		reguited electric generator capacity	KW	1.7	1.700
		100,0		Thermal energy;			
waste quantities wet.				biogas, energy generated		.511.400	
organic fraction paper/cardboard	t/year t/year	60.000 18.000		egyyzaleyt electric energy 60 cemaixing thermal energy 18	kWh/year 13 kWh/year 20	13.805.000 20.706.400	
plastics glass metals gubber, rags, leather, diapers	t/year t/year t/year t/year	33.000 9.000 9.000		33 themal energy consumed by the plant c themal losses in the plant c sumblus for sale	kWh/year kWh/year kWh/year	3.336.000 1.240.000 16.130.400	400

This thermal energy has not been valued for this study. It may be used however for cooling and air conditioning

City business model advantages:

- Strategic client can not ever stop producing waste....
- Huge savings of Municipal spending for handling, transporting and land filling
- Eliminating the need for source separation
- Green Green
- Zero landfill
- Recycling municipal waste- the most "sustainability" existing